skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Crowe, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    A coastal eddy is modelled as a barotropic vortex propagating along a coastal shelf. If the vortex speed matches the phase speed of any coastal trapped shelf wave modes, a shelf wave wake is generated leading to a ux of energy from the vortex into the wave eld. Using a simply shelf geometry, we determine analytic expressions for the wave wake and the leading order ux of wave energy. By considering the balance of energy between the vortex and wave eld, this energy ux is then used to make analytic predictions for the evolution of the vortex speed and radius under the assumption that the vortex structure remains self similar. These predictions are examined in the asymptotic limit of small rotation rate and shelf slope and tested against numerical simulations. If the vortex speed does not match the phase speed of any shelf wave, steady vortex solutions are expected to exist. We present a numerical approach for nding these nonlinear solutions and examine the parameter dependence of their structure. 
    more » « less